Optical response of correlated electron systems.
نویسندگان
چکیده
Recent progress in experimental techniques has made it possible to extract detailed information on dynamics of carriers in a correlated electron material from its optical conductivity, [Formula: see text]. This review consists of three parts, addressing the following three aspects of optical response: (1) the role of momentum relaxation; (2) [Formula: see text] scaling of the optical conductivity of a Fermi-liquid metal, and (3) the optical conductivity of non-Fermi-liquid metals. In the first part (section 2), we analyze the interplay between the contributions to the conductivity from normal and umklapp electron-electron scattering. As a concrete example, we consider a two-band metal and show that although its optical conductivity is finite it does not obey the Drude formula. In the second part (sections 3 and 4), we re-visit the Gurzhi formula for the optical scattering rate, [Formula: see text], and show that a factor of [Formula: see text] is the manifestation of the 'first-Matsubara-frequency rule' for boson response, which states that [Formula: see text] must vanish upon analytic continuation to the first boson Matsubara frequency. However, recent experiments show that the coefficient b in the Gurzhi-like form, [Formula: see text], differs significantly from b = 4 in most of the cases. We suggest that the deviations from Gurzhi scaling may be due to the presence of elastic but energy-dependent scattering, which decreases the value of b below 4, with b = 1 corresponding to purely elastic scattering. In the third part (section 5), we consider the optical conductivity of metals near quantum phase transitions to nematic and spin-density-wave states. In the last case, we focus on 'composite' scattering processes, which give rise to a non-Fermi-liquid behavior of the optical conductivity at T = 0: [Formula: see text] at low frequencies and [Formula: see text] at higher frequencies. We also discuss [Formula: see text] scaling of the conductivity and show that [Formula: see text] in the same model scales in a non-Fermi-liquid way, as [Formula: see text].
منابع مشابه
Mono-Mono-Mono and Bi-Bi-Bi three-layer graphene systems’ optical conductivity
Investigating the longitudinal optical conductivity of graphene systems, which is the mostimportant property for opto-electronic devices, for three-layer graphene systems theoretically and numerically is the main purpose of this study. Each layer can be mono- or bi-layer graphene. Separation between layers has been denoted by d, selected to be about ten nanometers. The carrier densities i...
متن کاملBand-Gap Tuning Of Electron Beam Evaporated Cds Thin Films
The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...
متن کاملTheory of time-resolved optical spectroscopy on correlated electron systems
The real-time dynamics of interacting electrons out of equilibrium contains detailed microscopic information about electronically correlated materials, which can be read out with time-resolved optical spectroscopy. The reflectivity that is typically measured in pump-probe experiments is related to the nonequilibrium optical conductivity. We show how to express this quantity in terms of real-tim...
متن کاملA coherent nonlinear optical signal induced by electron correlations.
The correlated behavior of electrons determines the structure and optical properties of molecules, semiconductors, and other systems. Valuable information on these correlations is provided by measuring the response to femtosecond laser pulses, which probe the very short time period during which the excited particles remain correlated. The interpretation of four-wave-mixing techniques, commonly ...
متن کاملBoron nitride substituted 12-crown-4 ether: Theoretical study of structural, thermochemical, and nonlinear optical properties
The structures and stability of 531 novel boron nitride substituted isomers of 12-crown-4 etherverified theoretically. For a collection of 23 selected BN isomers, structural geometry, vibrationalstability, energy gaps, natural bond population analysis, and nonlinear optical responses investigatedtheoretically. The changes of standard enthalpies for ionization reactions and electron affinityreac...
متن کاملInvestigating the Longitudinal Optical Conductivity in Three-Layer Graphene Systems with Composes Mono-Bi-Bi and Bi-Mono-Bi and Bi-Bi-Mono
The longitudinal optical conductivity is the most important property for graphene-baseddevices. So investigating this property for spatially separated few-layer graphene systems analytically and numerically is the main purpose of our study. Each layer can be mono- or bi-layer graphene. The density-density correlation function has been screened by the dielectric function using the random p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reports on progress in physics. Physical Society
 
دوره 80 2 شماره
صفحات -
تاریخ انتشار 2017